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Abstract

Polygenic risk scores (PRS) estimate an individual’s genetic likelihood of
complex traits and diseases by aggregating information across multiple
genetic variants identified from genome-wide association studies. PRS can
predict a broad spectrum of diseases and have therefore been widely used in
research settings. Some work has investigated their potential applications as
biomarkers in preventative medicine, but significant work is still needed to
definitively establish and communicate absolute risk to patients for genetic
and modifiable risk factors across demographic groups. However, the
biggest limitation of PRS currently is that they show poor generalizability
across diverse ancestries and cohorts. Major efforts are underway through
methodological development and data generation initiatives to improve
their generalizability. This review aims to comprehensively discuss current
progress on the development of PRS, the factors that affect their general-
izability, and promising areas for improving their accuracy, portability, and
implementation.

293

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
22

.5
:2

93
-3

20
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
09

/1
4/

22
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 

mailto:armartin@broadinstitute.org
https://doi.org/10.1146/annurev-biodatasci-111721-074830
https://www.annualreviews.org/doi/full/10.1146/annurev-biodatasci-111721-074830


GENOME-WIDE ASSOCIATION STUDIES AND GENETIC
PREDICTION OF COMPLEX TRAITS

Genome-wide association studies (GWAS) of complex traits have grown explosively over the last
decade (1, 2). In GWAS, researchers typically test millions of associations between the genetic
variants included in the study [usually single-nucleotide polymorphisms (SNPs)] and the pheno-
type of interest, using a multiple testing significance threshold of p < 5 × 10−8 genome-wide.
GWAS have been enormously helpful in two areas of biomedical research: providing unbiased
insights into the molecular etiology of diseases and comorbidities and predicting genetic risk of
diseases to further enable investigations into epidemiology and intervention strategies in preven-
tative medicine.

To assess an individual’s genetic predisposition to a common disease, researchers use polygenic
risk scores (PRS) created from GWAS and individual genotype data in an independent target co-
hort. In their simplest form, PRS are individual-level scores that aggregate the number of risk al-
leles across the genome weighted by their effect sizes.The theoretical underpinnings of this model
have roots in concepts of complex trait genetics and genetic prediction that date back over a cen-
tury (3). Many first applications of this model emerged in agriculture, particularly with estimated
breeding values (BVs) in livestock genetics (4–6). Similar to challenges with transferring predicted
BVs across purebred lines in animal models (7), such as the observed decrease in accuracy of es-
timated BVs in more genetically distant breeds, there are challenges with the transferability and
thus translation of PRS developed across diverse human populations.We focus on generalizability
of PRS in this review.

Factors That Influence Heritability in the Context of Polygenic Risk Scores

The goal of most prediction models in biomedical research is to predict whether a person will de-
velop a disease or the age of onset in individuals who do not yet have the disease. The prediction
accuracy of a model with genetic predictors, such as PRS, is bounded by the heritability of the
phenotype. This limit theoretically refers to broad-sense heritability: the proportion of a trait’s
variance attributable to all genetic variants (8). In practicality, however, it is almost impossible to
estimate the broad-sense heritability of a phenotype because, by definition, it considers the effects
of all genetic variants and interactions among them. In contrast, narrow-sense heritability, defined
as the proportion of a trait’s phenotypic variance explained by the additive genetic variation, can
be estimated in twin- and family-based studies (9). The majority of current PRS models are based
solely on genotyped or high-quality imputed variants. Therefore, the upper limit of PRS is deter-
mined by the proportion of a trait’s variance captured by the additive effects of these SNPs, also
known as SNP-based heritability (h2g), and tends to be a lower bound for narrow-sense heritability
(4, 10). The expected performance of PRS as measured by R2 can be shown as

h2g · h2g
h2g + M/N

, 1.

where h2g is the proportion of phenotypic variance explained by genotyped and imputed SNPs,
M is the effective number of genetic markers (e.g., independent SNPs), and N is the sample size
(4, 10). It follows that as N goes to infinity,M/N approaches 0, and R2 approaches h2g. Thus, h2g
can be used to guide how much predictive power to expect from PRS based on typical GWAS.
Commonly used heritability estimation methods include linkage disequilibrium score regression
(LDSC), which uses GWAS summary statistics (11), and genomic relatedness matrix restricted
maximum likelihood (GREML), which uses individual-level genotype data (12).

While heritability estimates provide a helpful guide, it is important to note that they are
not absolute bounds, as they are not fixed properties. Rather, they are specific to the context
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and population in which they are measured. Estimates may vary depending on differences in
environmental exposures and genetic ancestries (8, 13, 14). Even within a population, they may
change over time. Characteristics like age, sex, and socioeconomic status have been shown to
influence heritability estimates for a range of phenotypes in the UK Biobank (14). Differences
in heritability may to some extent contribute to disparities in PRS accuracy across popula-
tions, although sample size differences currently play a much larger role (15, 16). Further
investigations into the phenotypes for which heritability estimates are particularly variable across
populations will help guide expectations for PRS transferability when sample sizes are more
comparable across populations.

Partitioning Heritability into Functional Categories for Enrichment Analysis

The advent of GWAS has also accelerated large-scale efforts to define corresponding functions
across the genome. Some common examples of functional annotations include contributions to
protein structure and function, potential gene regulatory roles, and sensitivity to evolutionary
changes (17). These functional annotations are particularly useful in differentiating SNPs that
potentially have larger effects, may be causal (i.e., mutating the genetic variant directly alters the
trait), and may explain a larger portion of heritability than other SNPs. Altogether, they can help
increase the accuracy of SNP heritability estimates (17–19). Several methods have been developed
to partition SNP heritability by these annotations, such as stratified LDSC (S-LDSC) (20) and
GREML-based methods (12, 19, 21). These in turn have been leveraged to improve PRS accuracy
and transferability.

POLYGENIC RISK SCORE CONSTRUCTION METHODS

Given the rapid expansion of available GWAS summary statistics [e.g., see the Polygenic Score
Catalog (22)], there has been a recent flurry of new PRS construction methods that improve upon
methods originally applied in animal breeding to increase accuracy, computational efficiency, and
generalizability (23). Each method has advantages and disadvantages with varying accuracies and
computational burdens across different traits and cohorts. The main differences between PRS
methods are in their assumptions about which variants are included in the predictor and what
effect sizes or weights correspond to them. PRS methods that use individual-level data, such as
LASSO (least absolute shrinkage and selection operator) and BLUP (best linear unbiased predic-
tion), can predict the genetic component of multiple complex phenotypes with high accuracy (24,
25). However, access to individual-level genotype data is still currently limited because of logis-
tical, data security, and ethical considerations. Furthermore, it is computationally challenging to
implement those methods on current biobank-scale data. We therefore focus primarily on meth-
ods that only require GWAS summary statistics and a reference panel of linkage disequilibrium
(LD) information in this review, although approaches have also been developed that combine
both inputs when individual-level data are partially available (26). The implicit assumption for
such methods is that the reference sample should be from the same population in which GWAS
is performed, thus allowing unbiased estimation of LD from the reference panel. Discrepancies
in LD structure between the GWAS summary statistics and reference panel are likely to reduce
prediction accuracy. Additionally, the reference panel sample size balances computational burden
and LD estimation accuracy.

Summary statistics–based PRS methods can be further categorized by variant selection strat-
egy, i.e., SNP preselection methods or genome-wide methods. A widely used preselection method
is pruning and thresholding (P+T), which usually applies multiple p-value thresholds together
with a fixed LD r2 threshold to remove highly correlated SNPs. The LD window size is typically
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chosen arbitrarily, and SNPs are pruned through a process called LD clumping (23). P+T is then
optimized by choosing the p-value threshold that produces the highest prediction accuracy in a
validation or tuning cohort with both genotype and phenotype information available. P+T as-
sumes that the selected SNPs are nearly independent from each other and thus can be fit additively.
Extendedmodels have been developed that correct winner’s curse effects or incorporate functional
annotations (27, 28). More sophisticated genome-wide methods can model all markers simulta-
neously by rescaling or shrinking estimated effect sizes. One major advantage of such methods
is that they account for LD between SNPs using a reference panel in a principled manner, and
thus genome-wide SNPs can be fit simultaneously with a reduced risk of overfitting. Some
examples include LDpred (29), SBLUP (30), lassosum (31), SBayesR (32), PRS-CS (33), and
LDpred2 (34) (Table 1).

PRS methods typically make different assumptions about the prior distribution of SNP ef-
fect sizes, that is, the proportion of causal SNPs across the genome (ρ ) and their effect sizes.
For example, LDpred uses a Bayesian framework to infer the posterior mean SNP effects by
assuming a point-normal mixture distribution. One key parameter that needs to be optimized is
ρ. When this parameter is set to 1 (i.e., all SNPs are causal), the method assumes an infinitesi-
mal genetic architecture; this is the same assumption made in SBLUP. Data-driven methods such
as SBayesR, LDpred2-auto, and PRS-CS-auto can estimate such parameters without post hoc
tuning, which reduces computational burden. Comprehensive comparisons of prediction perfor-
mance using these methods have been reported in different traits, and a standardized benchmark-
ing framework called GenoPred has been developed to enable fair comparisons across methods
(35–37). A recent comprehensive review connects most PRS methods through a multiple linear
regression framework and thus compares their advantages and shortcomings from a statistical
perspective (38). The optimal prediction method depends heavily on the trait-specific genetic
architecture, and thus Bayesian or nonparametric methods that can adapt to different genetic ar-
chitectures are expected to perform more robustly across phenotypes. However, some of these
methods are also computationally burdensome. There are ongoing efforts in this active research
area to develop methods that improve both prediction accuracy and computational efficiency in
current biobank-scale datasets.

Increasing Polygenic Risk Score Accuracy and Generalizability Through
Multitrait, Multiancestry, and Functional Annotation Extensions

There are several potential approaches for extending single-trait PRS methods to improve accu-
racy and transferability (Figure 1). For example, multitrait methods leverage abundant genetic
correlations (rg) among complex traits by aggregating GWAS information across related traits
(39–41). Previous studies have reported extensive genetic correlations among related traits, such
as between schizophrenia and bipolar disorder [rg = 0.79, standard error (SE) = 0.04] and be-
tween type 2 diabetes and body mass index (BMI) (rg = 0.36, SE = 0.04) (11). By modeling the
genetic correlations between related traits, multitrait PRS methods such as wMT-SBLUP (42)
can estimate more accurate SNP effect sizes because of their shared genetic basis. Some methods,
such as the multitrait analysis of GWAS (MTAG) method, boost power by modeling genetic cor-
relation and GWAS summary statistics from related traits to produce trait-specific GWAS effect
size estimates that can then be used as input to PRS methods (40). These approaches typically sig-
nificantly increase prediction accuracy, especially for underpowered GWAS due to limited sample
sizes or heritability; however, they inherently trade off interpretability of the estimates by com-
bining multiple correlated traits for a single PRS construction.

In addition to multitrait approaches, PRS approaches that incorporate information from an-
cestrally diverse populations improve prediction performance especially in underrepresented
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Table 1 Overview of existing PRS methods

Typea Method (Ref.) Description Tuning parametersb Extensions
Single trait, single
ancestry

P+T (23) Selects independent
trait-associated SNPs within a
specified LD window

Usually just p-value
threshold; additional LD
window and LD r2 tuning
has the potential to
improve accuracy

2D PRS (27) (integrate
P+T and functional
annotations); doubly
weighted GRS (28)
(correct for winner’s
curse); SCT (155) (stack
multiple PRS built from
P+T with varying
parameters using
penalized regression)

LDpred (29) Uses a Bayesian multiple
regression framework;
LDpred-inf assumes an
infinitesimal model

Proportion of SNPs with
nonzero effects and LD
radius for grid model

LDPred2 (34) (faster and
more robust, automated
model without tuning
parameters implemented);
LDpred-funct (49)
(leverages functional
annotations)

SBLUP (30) Assumes an infinitesimal model,
approximates BLUP effects

NA wMT-SBLUP (39)

Lassosum (31) Uses a penalized regression
framework with a LASSO-type
penalty

Penalty parameter and
shrinkage parameter for
the LD correlation
matrix; pseudo-validation
applicable

NA

SBayesR (32) Uses a Bayesian multiple
regression framework; an
approximation of BayesR

NA SBayesS, SBayesRS (156)

PRS-CS (33) Uses a Bayesian multiple
regression framework with
continuous mixture shrinkage
priors

Proportion of SNPs with
nonzero effects for grid
model

PRS-CSx (46)

NPS (157) Uses a partitioning-based
nonparametric shrinkage
framework

NA NA

DBSLMM
(158)

Assumes all SNPs have nonzero
effects, with some having
larger effects; an
approximation of BSLMM

NA NA

SDPR (159) Uses a Bayesian nonparametric
model through Dirichlet
process regression

NA NA

Meta-PRS (26) Uses a linear combination of one
PRS derived from
individual-level data using
BOLT-LMM and another
derived from GWAS summary
statistics using LDpred/P+T

Weight for each PRS and
LDpred/P+T-related
hyperparameters

NA

(Continued)
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Table 1 (Continued)

Typea Method (Ref.) Description Tuning parametersb Extensions
Single trait and

single ancestry,
with functional
annotations

AnnoPred (50) Leverages genomic and
epigenomic functional
annotations based on a
Bayesian framework;
AnnoPred-inf assumes
infinitesimal models

Proportion of SNPs with
nonzero effects

PleioPred (41)

JAMpred (160) Uses a two-step Bayesian variable
selection framework

Sparsity parameter
reflecting the proportion
of SNPs with nonzero
effects

NA

IMPACT (52) Uses regulation annotations to
prioritize nearly independent
variants selected by P+T in
Europeans and generalized in
East Asians

Same as P+T; the
proportion of SNPs
explaining the closest
50% SNP-based
heritability

NA

Multitrait wMT-SBLUP
(39)

Combines genetically correlated
traits in a weighted index;
an approximation of
MT-BLUP

NA NA

MTAG (40) Meta-analyzes genetically
correlated traits accounting for
sample overlap; usually the
outputs are further used for
other PRS construction
methods

Dependent on the
downstream PRS
construction methods

NA

CTPR (161) Uses a cross-trait penalized
regression framework with the
LASSO and minimax concave
penalty

Penalty parameters NA

PANPRS (162) Uses a penalized regression
framework integrating
pleiotropy and functional
annotations

Penalty and sparsity
parameters

NA

PDR (163) Identifies shared pleiotropic
components underlying
genetically correlated traits to
estimate posterior mean effect
sizes

Dependent on the
downstream PRS
construction methods

NA

Multitrait with
functional
annotations

PleioPred (41) Leverages pleiotropy and
functional annotations based
on a Bayesian framework;
PleioPred-inf/PleioPred-anno-
inf assume infinitesimal
models

Covariance within the
overlapping individuals;
not required for
noninfinitesimal models

NA

(Continued)
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Table 1 (Continued)

Typea Method (Ref.) Description Tuning parametersb Extensions
Multiancestry XP-BLUP (88) Uses large-scale trans-ancestry

auxiliary GWAS (usually
European GWAS) to select
trait-associated SNPs as a
variance component and
evaluates ancestry-specific
effect sizes using linear mixed
models

Same as P+T NA

MultiPRS (43) Uses a weighted combination of
PRS trained from different
populations

Weight for each PRS NA

XPASS (164) Leverages trans-ancestry genetic
correlation; XPASS+
incorporates population-
specific effects

Same as P+T for XPASS+ NA

PRS-CSx (46) Jointly models multiple GWAS
from diverse ancestries using a
Bayesian framework assuming
continuous effect size
shrinkage

Proportion of SNPs with
nonzero effects for grid
model; weight for each
PRS

NA

shaPRS (165) Utilizes shared genetic effects
across ancestries using a
modified meta-analysis from
two GWAS (one is from target
ancestries); also applies to two
genetically correlated traits in
the same ancestry

Dependent on the
downstream PRS
construction methods

NA

Multiancestry
with functional
annotations/
fine-mapping

Polypred,
Polypred+
(44)

Uses a linear combination of
predictors from functionally
informed fine-mapping and
BOLT-LMM/SBayesR/
PRS-CS in large-scale
European GWAS; Polypred+
additionally incorporates
predictors from large-scale
data in target ancestry if
available

Weight for each PRS NA

aThe listed PRS methods are categorized as single- or multiancestry and single- or multitrait, with some incorporating additional information such as
functional annotations and fine-mapping (a detailed example is shown in Figure 1b).
bFor methods requiring additional validation/tuning cohorts, the corresponding tuning parameters are also briefly described.
Abbreviations: BayesR, Bayesian multiple regression model; BLUP, best linear unbiased prediction; CTPR, cross-trait penalized regression; DBSLMM,
deterministic Bayesian sparse linear mixed model; GRS, genetic risk score; GWAS, genome-wide association study; IMPACT, inference and modeling of
phenotype-related active transcription; LASSO, least absolute shrinkage and selection operator; LD, linkage disequilibrium; MTAG, multitrait analysis
of GWAS; NA, not any; P+T, pruning and thresholding; PANPRS, Pleiotropy and ANnotation information into PRS; PRS, polygenic risk scores; PRS-
CSx, PRS continuous shrinkage extension; SBayesR, summary statistics Bayesian multiple regression model; SBayesRS, SBayesS extension following the
multicomponent mixture model of SBayesR; SBayesS, summary data–based BayesS; SBLUP, summary statistics–based BLUP; SCT, stacked clumping and
thresholding; SDPR, summary data–basedDirichlet process regressionmodel; SNP, single-nucleotide polymorphism; wMT,weightedmultitrait; XP-BLUP,
cross-population BLUP; XPASS, cross-population analysis with summary statistics.
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Figure 1 (Figure appears on preceding page)

(a) PRS analysis steps. First, we obtain the estimated effect sizes β̂ of genetic markers from the training data. Second, we use different
PRS construction methods to rescale or reshrink the estimated effect sizes. We optimize the hyperparameters of those methods
requiring fine-tuning in the validation/tuning cohort. Finally, we construct the PRS and then validate their performance in the
independent test data. (b) Extensions of PRS methods based on GWAS summary statistics that incorporate multitrait, multiancestry,
and functional annotation data. Abbreviations: BLUP, best linear unbiased prediction; CTPR, cross-trait penalized regression; GWAS,
genome-wide association study; IMPACT, inference and modeling of phenotype-related active transcription; LMM, linear mixed
model; MTAG, multitrait analysis of GWAS; P+T, pruning and thresholding; PANPRS, Pleiotropy and ANnotation information into
PRS; PRS, polygenic risk scores; PRS-CSx, PRS continuous shrinkage extension; SBayesR, summary statistics Bayesian multiple
regression model; SBLUP, summary statistics–based BLUP; SNP, single-nucleotide polymorphism; wMT, weighted multitrait;
XP-BLUP, cross-population BLUP; XPASS, cross-population analysis with summary statistics.

non-European populations by leveraging well-powered GWAS from European populations (43–
46) (Table 1), typically with little if any decrease in accuracy for majority populations.Multiances-
try PRSmethods typically assume that genetic architecture is largely shared across populations. In-
deed, an analysis of 31 complex traits identified high cross-population genetic correlations of 0.85
(SE = 0.01) on average between East Asians and Europeans (47), replicating earlier findings (48).
Furthermore, multiancestry PRS methods such as PRS-CSx (46), which linearly combines PRS
computed from GWAS of multiple ancestries, enable more accurate PRS construction by sharing
information across multiple ancestry populations and leveraging differences in allele frequencies
and LD. While methodological challenges remain stemming from cross-ancestry differences in
biology (e.g., heterogeneous effect sizes), the environment [e.g., gene–environment (GxE) interac-
tion effects], and technology (e.g., different phenotyping, genotyping, and imputation strategies),
multiancestry PRS methods are promising approaches for improving PRS accuracy and transfer-
ability across populations, especially until we reach well-powered and comparable sample sizes of
GWAS in underrepresented populations.

Additional extensions of PRS methods have been developed that incorporate functional
annotations to improve the accuracy of PRS, such as LDpred-funct (49) and AnnoPred (50).
LDpred-funct leverages trait-specific functional priors using a baseline-LD model (49, 51).
AnnoPred estimates per-SNP heritability using S-LDSC to more heavily weight SNPs with
greater potential functionality in PRS (50). These two methods have performed comparably
in analyses despite differences in their inclusion of imputed variants and in how they model
polygenicity. Relatedly, IMPACT is a resource of regulatory annotations from epigenetic and
transcription factor binding datasets across a wide range of cell types that has been used in PRS
to select SNPs by prioritizing functional variants with more ancestrally portable genetic effects
in GWAS data (52). Other methods that attempt to identify and prioritize causal variants in PRS
through (functionally informed) fine-mapping, such as PolyPred, more accurately assign causal
effect sizes that are more transferable via their shared causal mechanisms of biology; these have
also been shown to outperform standard PRS approaches (44).

Each category of PRS construction method discussed here—those that incorporate multitrait,
multiancestry, or functional annotations—has separately been shown to improve prediction.How-
ever, most approaches do not link multiple extensions, such as using multitrait and multiancestry
data together. Hypothetically, one approach would be to apply a method like MTAG for multiple
traits within several populations, then use a multiancestry method such as PRS-CSx to combine
results across populations. A limitation of this multimethod approach, however, is that MTAG re-
quires all GWAS to have high statistical power, which is unlikely to be available for all populations
and phenotypes. Approaches are therefore still clearly needed to model and include multiple data
modalities to improve PRS portability.
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Pleiotropy

The extensive genetic correlation discovered among traits is in part due to pleiotropy, a phe-
nomenonwhere genetic variants affect multiple traits (53, 54).A systematic analysis of 558 publicly
available well-powered GWAS demonstrated that 90% of trait-associated loci have pleiotropic ef-
fects (54). As previously discussed, we can leverage such pleiotropic effects to improve prediction
accuracy, particularly in clinical research. For example, type 2 diabetes subtypes can be inferred
by modeling polygenic risk from waist-hip ratio, BMI, lipids, and other traits (55). Theoretically,
the proportion of variance explained R2 for the target trait yi by the PRS of its correlated trait ŷ j
can be written as

R2 =
[
cov(yi, ŷ j )

]2
var(yi ) var(ŷ j )

. 2.

This equation can be approximated as

R2 ≈ r2g · h2g,i · h2g, j
h2g, j +

Mj
Nj

, 3.

using approximations var(ŷ j ) = h2g, j +
Mj
Nj

and cov(yi, ŷ j ) = cov(gi, ĝ j ) ≈ cov(gi, g j ) = rg
√
h2g,i · h2g, j ,

where h2g,i and h
2
g, j are respectively SNP-based heritability for traits i and j, rg is their genetic

correlation, andNj andMj are respectively numbers of samples and independent variants for PRS
estimation in trait j (56). When Nj goes to infinity, R2 approaches R2 ≈ r2g · h2g,i. As SNP-based
heritability is the theoretical upper bound of R2 for the PRS of any target disease, this equation
provides an analogous upper bound of PRS derived from correlated traits, which is proportional
to the squared genetic correlation of the target and correlated trait (Figure 2a).

While potentially useful for increasing the accuracy of PRS for certain traits, leveraging the
pervasive pleiotropy for prediction also raises serious concerns about unintended consequences
of PRS in many settings, such as embryo selection. For example, a previous study reported that
embryo selection based on higher polygenic scores for educational attainment would increase the
risk of bipolar disorder by 16% from an absolute risk of 1% to 1.16% (57). The magnitude of this
unintended consequence depends on many parameters, including heritability, genetic correlation,
PRS predictive performance, the number of embryos for selection, and the prevalence of the traits
in the population (Figure 2b). Other work has demonstrated how these parameters affect the ex-
pected risk reduction for the target disease and risk increase for correlated diseases under different
simulation settings (58). With a typical number of embryos (n = 5) and prevalence (k = 1%), the
relative risk increase ranges from ∼6% for weakly correlated diseases (rg = −0.1) to ∼22% for
strongly correlated diseases (rg = −0.3). These observations indicate that careful consideration
is required to prevent unintended and potentially harmful consequences of selecting embryos for
pleiotropic traits.

EVALUATING POLYGENIC RISK SCORE ACCURACY

There are several metrics for evaluating PRS accuracy, each measuring various aspects of model
performance. Typically, the performance of PRS is evaluated in an independent target dataset.
Using linear regression for quantitative traits or logistic regression for binary traits, we test the re-
lationship between the genetically predicted and measured phenotype. For PRS methods that re-
quire tuning of hyperparameters, an additional validation/tuning dataset may be required to avoid
overfitting. In these cases, both target datasets (validation and testing cohorts) require individual-
level genotype and phenotype data. Previous work has shown that pseudo-validation can be an
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Figure 2

(a) Theoretical upper bound of the proportion of variance explained, R2, based on Equation 3. For a given target trait (with heritability
h2g) and its correlated trait (with genetic correlation r2g to the target trait), the plot shows distributions of theoretical maximum R2.
Dotted lines represent contours of maximum R2= 0.1, . . . , 0.9. (b) The relative risk increases for correlated traits by selecting embryos
based on higher polygenic scores of educational attainment. With different levels of heritability and prevalence of correlated traits, the
plot demonstrates how the relative risk increase changes with regard to genetic correlation with the target trait (educational
attainment). We set the number of embryos for selection to be 10; broad-sense and SNP-based heritabilities of educational attainment
to be 0.4 and 0.1, respectively; and standard deviation of educational attainment to be 3.2. To generate this figure, we modified the
simulation framework developed by Turley et al. (57).

alternative strategy to determine optimal hyperparameters when the validation phenotypes are
not available (31).

While the squared correlation (R2) between true phenotype and PRS is an intuitive evalua-
tion of phenotypic variance explained for quantitative traits, incremental or partial R2 is most of-
ten used to quantify the specific contribution of PRS after accounting for appropriate covariates
in the regression. For binary traits, pseudo-R2 metrics serve as conceptual proxies, of which
Nagelkerke’s R2 is one of the most widely used statistics. To improve interpretability and com-
parability across cohorts, however, pseudo-R2 metrics on the liability scale adjust the metric by
case–control ratios so that it is comparable to trait heritability. This conversion typically requires
disease population prevalence (59), which may require careful consideration if prevalences vary
across populations. To assess the discriminative power of the model to correctly predict individ-
uals with and without a disease, researchers most commonly use the metric known as area under
the ROC (receiver operating characteristic) curve (AUC) (sometimes referred to as Concordance
statistics, C-index, or C-statistics for survival models). AUC values of 0.5 and 1 indicate no and
perfect discriminatory ability between cases and controls, respectively. PRS can be modeled both
with and without other risk factors to understand the performance of specific risk factors, as well
as the overall combined model. Additional evaluations based on the PRS distribution between
cases and controls are often required in order to assess the clinical utility of predictive models. As
a continuous score, PRS enable the use of any threshold to stratify individuals at different levels of
risk. Recent studies have measured odds ratios (ORs) by comparing top ranked PRS values relative
to other PRS strata (e.g.,middle stratum or the remaining strata combined), but such comparisons
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can be misleading.Within such comparisons,ORs between extreme PRS strata (usually top versus
bottom, e.g., 10%, 5%, or even 1%) are often inflated relative to OR estimates comparing groups
with and groups without a disease (60). With information such as AUC and prevalence of binary
traits, the relative risks in a reference group can be transformed to absolute scales in the general
population using online tools (61) and R packages (62). Conversion from relative to absolute risk
scales (e.g., lifetime remaining risk or five-year risk) aids interpretability, is necessary for clinical
decision-making, and leaves less room for overly optimistic interpretations of model utility (63).
Relatively few absolute risk models are used in clinical medicine, and an open challenge arises
when PRS can add significantly to a disease area for which no absolute risk models exist beyond
simple risk modifiers such as age and sex.

The exciting potential applications of PRS in the clinic should be accompanied by careful con-
siderations of best practices for PRS construction and evaluation. PRS models for individual-level
risk prediction are currently somewhat unstable; for example, when PRS are developed for the
same trait and ancestry with different discovery GWAS, typically only small to modest propor-
tions of individuals in the upper tails of the PRS distribution in the same target cohort overlap
(64). This highlights the uncertainty of PRS estimates for individual-level risk stratification (65).
Moreover, PRS performance is related to trait-specific genetic architecture. Therefore, system-
atically exploring the absolute risk of an individual developing a particular disease is necessary,
particularly for the translation of PRS. Additionally, recent PRS evaluations have been highly
inconsistent between studies, making it difficult to compare utility across studies. There are on-
going efforts to improve the reproducibility of PRS studies and benchmarking against other PRS,
such as PRS repositories to encourage data-sharing and transparency (66). These efforts propose
guidelines and protocols for performing PRS analyses and improving reporting standards (60, 63,
67). However, guidance on multiancestry PRS construction and best practices in all these efforts
are lacking. Specifically, while multiancestry GWAS are currently critical for overcoming vast
Eurocentric biases, they raise further challenges in PRS construction and evaluation practices.
Furthermore, as PRS methods improve and GWAS attain larger sample sizes, corresponding ef-
fect sizes used as weights in PRS methods will change over time. Therefore, more sophisticated
methods are needed to keep PRS updated or ensure that PRS are stable over time, with equitable
benefits in different contexts.

POLYGENIC RISK SCORE TRANSFERABILITY ACROSS ANCESTRIES

Given vast Eurocentric biases in genetic studies, PRS have wide-ranging accuracies across pop-
ulations. Specifically, PRS constructed from current Eurocentric GWAS are most accurate for
European ancestry populations (68). PRS are typically constructed using common variants [with
a minor allele frequency (MAF) of at least 1%]; these common variants typically arose long ago in
human history and are thus expected to be shared across ancestries. While some degree of trans-
ferability of PRS across ancestries might be expected, such accuracy can be greatly attenuated,
especially in more genetically divergent populations relative to the discovery population (16, 69).
For example, predictions of PRS in African ancestry populations are only ∼20–40% as accurate
as in European populations when using European-based GWAS (70, 71) (Figure 3). This limited
portability of PRS across ancestries is relatively consistent regardless of the PRSmethods used (72,
73). Instead, GWAS discovery cohort composition has the largest impact on prediction accuracy.
Many additional factors can contribute to such limited PRS transferability, such as (a) between-
ancestry MAF and LD differences, (b) fine-scale population structures, (c) portability differences
of indirect and direct effects, and (d) differences of cohort characteristics in the discovery and
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Figure 3

Prediction accuracy of polygenic risk scores relative to European ancestry individuals across 17 quantitative
traits and 5 continental ancestry groups in the UK Biobank. Violin plots show the distributions of relative
prediction accuracies, points show mean values, and error bars show standard error of the mean. Figure
adapted from Reference 15.

target populations. This has motivated data generation and methods development for improving
PRS transferability across ancestrally diverse populations.

Minor Allele Frequency and Linkage Disequilibrium Differences
Across Ancestries

GWAS have the highest statistical power to identify common genome-wide significant variants,
resulting in higher frequency variants in the discovery population. Therefore, variants that are
rare or less common in Eurocentric GWAS can be more easily identified in other non-European
ancestry populations when they are at intermediate frequencies. Relatedly, LD is dependent on
the variant’s MAF (74). The LD statistics, r or r2, quantify the taggability of genotyped or imputed
SNPs and vary markedly among ancestries with different demographic histories. Genetic variants
with intermediate MAF (i.e., ∼0.3) are likely to produce higher LD correlations, and thus have
the highest power to be detected in the discovery population (75). LD differences in turn impact
effect size estimation, which is proportional to the LD r between tag SNPs and causal variants.
Accounting for MAF and LD differences across ancestries can largely explain the limited porta-
bility of PRS generated with European-based GWAS under the simplest assumption that causal
variants underlying the trait are shared (72). Therefore, PRS transferability is expected to improve
when modeling between-ancestry LD andMAF differences. For example, the highest genetic dif-
ferentiation among continental ancestries is between African and out-of-Africa populations due
to the out-of-Africa migration; consequently, extensive computer simulations have shown that us-
ing African ancestry cohorts as discovery GWAS will generate more generalizable associations,
with more similar allele frequencies across continental populations from less genetic drift (76).
Furthermore, the resolution of fine-mapping studies greatly benefits from multiancestry cohorts
due to between-ancestry LD differences, especially when including African populations (77). This
also has the potential to improve PRS transferability, as recent studies suggest that common causal
variants tend to be shared across ancestries (45, 78, 79).
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Uncorrected stratification across GWAS of various traits
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Figure 4

Uncorrected population stratification in GWAS is pervasive. Across several studies, there are significant correlations between PCs in
the 1000 Genomes Project and effect size estimates β̂ from GWAS for a range of phenotypes. Abbreviations: BMI, body mass index;
DIAGRAM, Diabetes Genetics Replication and Meta-analysis; GIANT, Genetic Investigation of Anthropometric Traits; GWAS,
genome-wide association studies; IBD, inflammatory bowel disease; MAGIC, Meta-Analysis of Glucose and Insulin-related traits
Consortium; PC, principal component; PGC, Psychiatric Genomics Consortium; ReproGen, Reproductive Genetics; SSGAC, Social
Science Genetic Association Consortium; TAG, Tobacco and Genetics.

Fine-Scale Population Structure

The limits of PRS transferability have been less well studied within finer-scale population
structures, such as among subpopulations of the same or similar ancestry groups. Geographic
distributions or novel dimensionality-reduction methods can uncover discrete clusters of individ-
uals within the same ancestry, such as in Finland (80), Japan (81) and the United Kingdom (73).
Inconsistencies between PRS and observed phenotype differences across continental ancestry
groups have also been identified in relatively homogeneous populations. These findings can pose
problems in the interpretation and clinical translation of PRS. For example, previously identified
polygenic adaptation signals were shown to be confounded by cryptic population structures in
the UK Biobank (82, 83). Although cryptic population structures could potentially increase the
prediction accuracy of PRS, they may simultaneously limit generalizability and interpretability
(Figure 1). Therefore, understanding the full extent and consequences of uncorrected population
structure (Figure 4) will be critical for improving PRS transferability.

Admixed Populations

PRS transferability issues are especially evident in recently admixed populations, for which two or
more ancestral components (typically originating from different continents) are present in each
genome. Recently admixed populations are also largely underrepresented. However, these pop-
ulations provide unique opportunities to explore approaches for improving PRS transferability.
First, they provide some (albeit imperfect) level of control for environmental differences across
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groups given the disparate continental ancestral components within their genomes. Second, stud-
ies have shown that the prediction performance of PRS from European-derived GWAS decays
with increasing admixture proportions from underrepresented ancestries, especially African an-
cestries (84, 85). Therefore, local ancestry-specific effect size estimates can boost GWAS power
(86) and have the potential to improve prediction performance in admixed populations, particu-
larly for traits with relatively sparse genetic architectures (84, 87). Some methods that model local
ancestry have also been developed but not yet widely applied (88, 89). Linearly combining PRS
from large-scale European ancestry GWAS and smaller underrepresented non-European target
ancestries has improved prediction in mixed ancestry populations (43, 84). A schizophrenia study
has shown that more diverse GWAS discovery cohorts can also improve prediction performance
in recently admixed populations (90). These results highlight the utility of admixed populations
for better understanding how PRS transferability could be improved with a larger effective sam-
ple size, a larger fraction of participants included with diverse ancestries, and more contributing
genetically distant source populations.

Family History and Direct Versus Indirect Genetic Effects on Phenotypes

Differences in the contribution of direct versus indirect genetic effects may also influence effect
size differences across populations and thus limit PRS transferability. Direct and indirect effects
both refer to causal genetic variants. However, direct effects are the effects of inherited genetic
variation on the phenotype of the individual that carries that variant. In contrast, indirect genetic
effects denote effects of a relative’s genotype on the phenotype of an individual through a shared
environment (91, 92). Examples of indirect genetic effects include variants that affect parental or
sibling behaviors (93). GWAS typically only include unrelated samples without family data, and
therefore capture the combination of direct and indirect effects (93). This maximizes predictive
power for PRS, so in many cases effect size estimates from standard GWAS without family data is
preferred and sufficient for PRS construction (93). Within-family genetic association studies (for
example, within-sibship GWAS) can be used to obtain more precise estimates of direct genetic
effects. Studies that have compared within- and between-family PRS prediction have indeed found
that for a number of traits, standard GWAS have greater prediction accuracy than sib-GWAS,
indicating that some degree of genotype-environment correlation typically impacts PRS accuracy
(94–96). However, as noted by these studies, a consequence of this increased predictive power
may be decreased portability, even within the same ancestry. Therefore, decomposing direct from
indirect effects may guide more generalizable prediction models, particularly for phenotypes in
which indirect effects may have outsized contributions, such as behavioral traits. This will require
datasets with genotyped siblings and/or parents at a much larger scale than currently available
to reach sufficient statistical power to parse direct versus indirect effects. Polygenic transmission
disequilibrium tests (pTDT) in family data can also illuminate how common and rare genetic risk
factors contribute to liability (97). In the absence of large-scale genetic studies with pedigree data,
family history information alone can boost PRS accuracy (98). This builds on prior work showing
that PRS informs risk somewhat independently of self-reported family history (99).

Collider Bias, Gene–Environment Interaction Effects, and Nongenetic Factors

Interpretation of PRS generalizability requires consideration of the GWAS cohort study design.
Nearly all GWAS are subject to some degree of ascertainment bias. For example, the volunteer-
based ascertainment of the UK Biobank study means that participants tend to be healthier,
wealthier, and higher educated than average (100), whereas hospital-ascertained cases may be
sicker on average. The latter may also introduce collider bias, in which even if two variables were
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initially unrelated, they become correlated through a downstream effect of the two variables. In
the hospital ascertainment example, two unrelated diseases that cause hospitalization may become
correlated in a dataset due to the study design. This may induce phenotypic correlation and some
degree of GWAS effect size correlation between the two unrelated phenotypes.

PRS models, in their most common and basic form, do not consider effects of nongenetic,
environmental variables on phenotypes. This may hinder PRS transferability in contexts where
GxE interactions exist. GxE interaction effects can be defined as phenomena whereby the effect
of a genotype on a phenotype depends on the environment (101, 102). Consequently, the effect
of the variant on the phenotype can differ in magnitude across populations depending on the
environment, so PRS will not necessarily transfer consistently (93). There are few reproducible
examples of GxE interactions.One example is the attenuation of obesity risk from FTO variants as
a function of multiple lifestyle factors, including physical activity and alcohol consumption (103,
104). Insufficient statistical power, multiple testing burden, and lack of reproducible environmen-
tal measures are major barriers to pinpointing GxE interactions (93). However, with the advent of
PRS, studies have been able to move beyond candidate GxE interactions to genome-wide studies.
This approach has been particularly prevalent in the neuropsychiatric field, where several inves-
tigations have been conducted into the effects of interactions between PRS and various relevant
exposures on depression, psychosis, and neuroticism (105–107). Additionally, studies have investi-
gated the effects of interactions among PRS for education on obesity (108, 109). The consistency
of these effects and other interactions in non-European ancestry populations remains an open
question. It is also unclear how these interactions may attenuate the power and generalizability of
PRS in different populations.

Studying GxE interactions across populations is a considerable challenge that will require rig-
orous evaluations of the contribution of nongenetic factors to disease risk in different populations.
The immense scale of possible environmental exposures and the difficulties in systematically and
reproducibly collecting and defining these exposures have so far impeded investigations into the
effects of nongenetic factors in aggregate. Some have considered coarse environmental risk scores
in the context of multipollutants (110, 111). More recently, studies have more broadly evaluated
polyexposome scores alongside PRS from insurance billing and zip code data (112); such analyses
can be challenging to interpret, as environmental effects that are causal rather than a consequence
of disease cannot be determined without further longitudinal measures. With the establishment
of the UK Biobank, some progress has been made on quantifying the effects of a wide range of
modifiable environmental factors on disease risk alongside PRS (113). However, we need more
investment in the systematic collection of environmental variables, as well as novel analytic ap-
proaches, to fully elucidate environmental contributions to phenotypes.

POTENTIAL TRANSLATIONAL USES

Utility of Polygenic Risk Scores in Population Risk Stratification and Screening,
Not Diagnostic Tests

A growing number of studies have identified significant associations between PRS and disease
status, highlighting interest in their potential for clinical translation. While PRS hold clear
promise in research settings and are increasingly studied in preventative medicine contexts, their
clinical utility is neither definitive nor clear (114, 115). Currently, PRS enthusiasts, skeptics, and
researchers along this spectrum disagree on the strength of evidence needed for risk stratification
in clinical settings. Varying opinions notwithstanding, establishing clinical value requires an
evidence base akin to existing biomarkers already used in preventative medicine—i.e., showing
that incorporating PRS into current clinical models significantly improves patient outcomes, and
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in which specific contexts and areas of medicine (116, 117). Testing these models also requires
shifting from a relative risk distribution to an absolute disease risk estimate (116, 118).

While not unique to PRS, an especially pernicious issue when evaluating their accuracy is con-
text dependence. Interpreting the predictive value of PRS for individuals with ancestries from
multiple disparate origins is particularly challenging with current scales of data and methods.
Clinical models for risk factors in other areas of medicine over- and underestimate risk for certain
populations as well. For example, including pooled cohort equations used in atherosclerotic car-
diovascular diseases (CVD) may systematically underestimate risk in minorities or overestimate
risk in patients with higher socioeconomic status (119). However, ancestral study composition has
a far more direct impact on PRS prediction accuracy (15) than it does on the validity of biomarkers
used in most areas of medicine.

A potential benefit of PRS beyond other biomarkers is their informativeness relatively early
in life, before other biomarkers typically show increased risk (120, 121). This complicates clinical
trial designs,which tend to be relatively short, however, because disease diagnoses are rarer early in
life and, thus,more time is required to observe the potential benefits of early interventions. Recent
studies show that PRS can be used as biomarkers before lab tests are elevated in presymptomatic
patients, and higher PRS may be associated with an earlier age of onset for complex diseases
(122, 123). Conversely, one benefit of the utility of PRS early in life is their potential to prevent
overscreening (124, 125).

The most promising areas of medicine where PRS may be beneficial soonest are for diseases
that have actionable interventions, are significantly heritable, have large-scale GWAS available,
and improve current clinical models or facilitate the development of clinical models where they
are lacking. Some examples include breast and prostate cancer (121, 124, 126, 127), type 1 and 2
diabetes (128, 129), and CVD (116, 120, 130, 131). As PRS offer probabilistic insights into disease
risk and trait likelihood, they are not diagnostic tools. Therefore, communicating risk for complex
traits distilled by PRS requires particular care to avoid perceptions of genetic determinism (57,
132). PRS for schizophrenia and psychosis have higher predictive power than most other common
diseases but have shown limited prognostic value compared to features captured in a structured
clinical interview (133) and unclear actionability. Potential applications for PRS beyond assessing
disease risk include predicting response to treatment, such as for antipsychotic medications (134).
In contrast to these promising areas of medicine, PRS have been considered for screening outside
typical preventative medicine contexts, such as embryo selection offered by direct-to-consumer
companies. This use of PRS is unregulated, remains ethically problematic and scientifically dubi-
ous, and is overshadowed by other considerations with in vitro fertilization (57, 135).

Use Cases of Polygenic Risk Scores Alongside Clinical Risk Factors
and Demographic Information

In risk stratification models, PRS often perform poorly alone but comparatively well in combi-
nation with existing risk factors (114, 120). Their clinical utility should therefore be evaluated in
concert with other disease-specific risk factors (114, 120). Perhaps the most obvious near-term use
case for clinical implementation of PRS is in breast cancer; PRS have outperformed current exist-
ing clinical risk models for breast cancer in European ancestry populations for several years and
are becoming increasingly precise and nuanced (121, 124, 126, 127). One clinical model used for
breast cancer risk analysis, the Breast and Ovarian Analysis of Disease Incidence and Carrier Es-
timation Algorithm (BOADICEA), provides a flexible framework that can include rare truncating
variants in BRCA1, BRCA2, PALB2, CHEK2, and ATM; PRS; family history; and mammographic
density (136, 137). The effects of various risk factors are typically combined multiplicatively

www.annualreviews.org • Developing More Generalizable Polygenic Risk Scores 309

A
nn

u.
 R

ev
. B

io
m

ed
. D

at
a 

Sc
i. 

20
22

.5
:2

93
-3

20
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

H
ar

va
rd

 U
ni

ve
rs

ity
 o

n 
09

/1
4/

22
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



≤ Population risk Intermediate risk High risk

Lifetime risk < 17%

Screening
•  Mammogram every

2 years (50–69)
•  Clinical breast exam

every 1–2 years

17% ≤ Lifetime risk < 30%

Screening
•  Mammogram every

1–2 years (40+)
•  If breast density >75%:

annual mammogram,
consider ultrasound

•  Clinical breast exam
(annual)

Lifetime risk ≥ 30%

Screening
•  Annual mammogram

(35+ if MRI, 30–35
otherwise)

•  Consider annual
MRI (30+)

•  Clinical breast exam
(annual)

Prevention
•  Chemoprevention?
•  Mastectomy?

BOADICEA risk factors considered:
•  Family history: cancers (breast, ovarian,

prostate, and pancreatic)
•  Age (at cancer diagnosis or current/death

for all unaffected family members)
•  Genetic risk (rare variants in BRCA1,

BRCA2, PALB2, CHEK2, and ATM and
common variants from PRS)

•  Lifestyle/hormonal/reproductive: height,
BMI, parity, age at first birth, age at
menarche, age at menopause, use of oral
contraceptive, use of hormone replacement
therapy, alcohol intake

•  Mammographic density
•  Breast tumor morphology: ER,

progesterone receptor, HER2 receptor,
CK14, CK5/6 status

•  Demographic: country of origin, Ashkenazi
Jewish origin

Y ~ Xβ̂Fam hx + Xβ̂Genetics + … + Xβ̂Lifestyle

Combined model
(allows for missing information)

+ + … +

Figure 5

A clinical translated model for breast and ovarian cancer risk that incorporates PRS alongside other clinical information. While
BOADICEA includes sex information, this was simplified in the diagram given the higher prevalence among women. The model and
screening strategies summarized in this figure have been described more fully previously (136, 138, 145). Abbreviations: BMI, body
mass index; BOADICEA, Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; ER, estrogen receptor;
Fam hx, family history; MRI, magnetic resonance imaging; PRS, polygenic risk scores.

(126, 137). Incorporating genetic risk factors that are enriched in disease subtypes, for exam-
ple, in estrogen receptor (ER)-positive versus ER-negative breast cancer, may be possible in fur-
ther model extensions, informing prevention programs based on risk-reducing medication (136).
While most PRS inform relative risk, a critical step in clinical utility adopted by BOADICEA
is transforming to absolute risks and providing clear clinical thresholds for screening and pre-
vention. Figure 5 combines information from previous proposals for implementation (136–138).
In practice, however, guidelines for screening and management vary enormously across a wide
range of professional organizations (e.g., American Cancer Society and US Preventive Services
Task Force). Even when recommendations are clearer, for example, regarding the interpretation
of pathogenic genetic variants from the American College of Medical Genetics and Genomics
(139), health risk is communicated to patients who make the ultimate decisions about screening
or prevention.

Another clinical area where PRS show promise is the prevention of CVD.PRS in European an-
cestry populations aggregate effects similar in magnitude to monogenic risk variants (131). They
also predict risk more accurately than other individual risk factors routinely used in clinical models
including smoking, diabetes, family history of heart disease, BMI, hypertension, and high choles-
terol; intuitively, the best performing model combines PRS with these conventional risk factors
(120) (Figure 6). Evidence of PRS utility from retrospective studies of CVD in the United States
and United Kingdom has so far been absent or modest (140, 141). However, a major challenge
with these early interpretations and PRS evaluation is their utility earlier in life, requiring stud-
ies that are longer term than those used for typical risk factors. Prospective studies offer more
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Figure 6

Current clinical risk factors for cardiovascular disease alongside PRS. Figure adapted from Reference 120 (CC BY 4.0). Abbreviations:
GRS, genetic risk score; PRS, polygenic risk scores.

real-world insights into the question of clinical utility, and an observational follow-up study in
Finland has shown early promise, along with a clinical trial in the United States in which PRS
motivated positive changes in health behavior (142, 143). Relatedly, the contributions of mono-
genic and polygenic risk factors to QT interval duration have also been jointly investigated in
the UK Biobank and Trans-Omics for Precision Medicine (TOPMed) Consortium; in both stud-
ies, monogenic variants and PRS contribute to risk of long QT syndrome, but most patients do
not have elevated risk from either risk factor (144). Implementing PRS more generally will likely
require multiple large-scale follow-up studies, as notable differences abound in social cohesion
and healthcare systems across countries participating in existing studies. Cost also needs to be
evaluated to determine the economic burden for implementing such a system versus the amount
recouped through early diagnosis or disease prevention (127).

Current Deployment Examples

Clinical translation of PRS has already begun, with initial efforts in a limited number of health
systems, although studies to evaluate efficacy and considerations are still needed. A prominent
area where PRS are being integrated and tested is in breast and ovarian cancer, for example,
with the BOADICEA approach. This model is implemented as a web interface in the CanRisk
Tool (145), which is already publicly available to medical practitioners and researchers for breast
cancer screening and risk stratification research. PRS are also being deployed and evaluated in
the context of CVD risk screening. For example, a report recently described a framework for
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how policymakers and healthcare systems could incorporate PRS for CVD into NHS (National
Health Service) health checks in the United Kingdom (146). Similarly, the Electronic Medical
Records and Genomics (eMERGE) Network has also evaluated PRS for CVD risk across some
ancestries and healthcare settings, with consistent findings to those described previously (130).

There are also already several early examples of PRS available directly to consumers, through
their healthcare providers via for-profit and nonprofit companies, and in research settings. For
example, consumers who already have their own genotyping data can upload their genetic data to
Impute.me (147) to calculate their PRS and their contextualizedmeaning with respect to a broader
population. 23andMe already provides PRS for type 2 diabetes (148). Additionally,Myriad Genet-
ics markets the Myriad RiskScore, which combines an 86-SNP-based PRS for breast cancer with
a clinical risk score (149). Recently, Ambry Genetics discontinued AmbryScore, a similar product,
in part because of limited data across ancestry groups (117). Genomics PLC has developed PRS
as well as predictive models for CVD and other disease areas that integrate PRS (150, 151).

Communicating risk remains a major challenge for integrated polygenic and traditional risk
models across all disease areas. Current evidence on the effect of communicating genetic risk
alongside lifestyle factors in, for example, CVD is mixed, with caveats regarding who communi-
cates the information and how (i.e., a trusted doctor versus a web-based form) (142, 152).

FUTURE DIRECTIONS

As PRS have become increasingly powerful with the exponential growth in GWAS, attention has
shifted toward new research directions and clinical translation. Far beyond their original human
applications in biology, more recent proposals include applications in social sciences such as
personalized education. Some researchers and groups have called for a society-wide conversation
on acceptable uses of PRS accompanied by potential regulation and oversight particularly with
more controversial uses such as embryo selection (57, 153). Simultaneously, enthusiasm has
ramped up for implementation in some areas of healthcare as PRS have become increasingly
available and predictive.

A major ethical and scientific concern with all of these use cases of PRS currently is that they
have uneven accuracies across populations due to Eurocentric genetic study biases (15). There-
fore, major efforts are underway to increase the generalizability of PRS across diverse cohorts,
ancestries, and populations. In addition to rapidly expanding the diversity of GWAS data, sev-
eral promising areas of exploration are underway for improving the accuracy of PRS across all
populations. These include extending PRS methods to integrate multiple ancestries, traits, and
functional annotations.

The lack of PRS generalizability across ancestries is easily measurable and has been well docu-
mented.While genetic studies are especially prone to issues of stratification, other epidemiological
risk factors are likely to suffer from the same study biases in medicine more broadly but may be
less reproducibly measured and therefore less obvious. Already, some evidence of racial biases has
been identified in algorithms that have been designed to coordinate care among patients (154).
Therefore, the lack of PRS generalizability should be a warning that many other algorithms used
to assess risk and care for patients are also likely to suffer from biases that could exacerbate health
disparities but are fixable.
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